Understanding objects is a central building block of artificial intelligence, especially for embodied AI. Even though object recognition excels with deep learning, current machines still struggle to learn higher-level knowledge, e.g., what attributes an object has, and what can we do with an object. In this work, we propose a challenging Object Concept Learning (OCL) task to push the envelope of object understanding. It requires machines to reason out object affordances and simultaneously give the reason: what attributes make an object possesses these affordances. To support OCL, we build a densely annotated knowledge base including extensive labels for three levels of object concept (category, attribute, affordance), and the causal relations of three levels. By analyzing the causal structure of OCL, we present a baseline, Object Concept Reasoning Network (OCRN). It leverages causal intervention and concept instantiation to infer the three levels following their causal relations. In experiments, OCRN effectively infers the object knowledge while following the causalities well. Our data and code are available at https://mvig-rhos.com/ocl.
translated by 谷歌翻译
知识图的归纳链路预测旨在预测未见实体之间的缺失联系,而那些未在训练阶段显示的实体。大多数以前的作品都学习实体的特定实体嵌入,这些实体无法处理看不见的实体。最近的几种方法利用封闭子图来获得归纳能力。但是,所有这些作品仅在没有完整的邻近关系的情况下考虑子图的封闭部分,这导致了忽略部分邻近关系的问题,并且很难处理稀疏的子图。为了解决这个问题,我们提出了SNRI子图邻近关系Infomax,它足够从两个方面利用完整的相邻关系:节点特征的相邻关系特征和稀疏子图的相邻关系路径。为了进一步以全球方式建模邻近关系,我们对知识图进行创新的相互信息(MI)最大化。实验表明,SNRI在归纳链路预测任务上的大幅度优于现有的最新方法,并验证以全局方式探索完整的邻近关系的有效性,以表征节点特征和在稀疏子分类上的理由。
translated by 谷歌翻译
深度神经网络(DNN)的记录断裂性能具有沉重的参数化,导致外部动态随机存取存储器(DRAM)进行存储。 DRAM访问的禁用能量使得在资源受限的设备上部署DNN是不普遍的,呼叫最小化重量和数据移动以提高能量效率。我们呈现SmartDeal(SD),算法框架,以进行更高成本的存储器存储/访问的较低成本计算,以便在推理和培训中积极提高存储和能量效率。 SD的核心是一种具有结构约束的新型重量分解,精心制作以释放硬件效率潜力。具体地,我们将每个重量张量分解为小基矩阵的乘积以及大的结构稀疏系数矩阵,其非零被量化为-2的功率。由此产生的稀疏和量化的DNN致力于为数据移动和重量存储而大大降低的能量,因为由于稀疏的比特 - 操作和成本良好的计算,恢复原始权重的最小开销。除了推理之外,我们采取了另一次飞跃来拥抱节能培训,引入创新技术,以解决培训时出现的独特障碍,同时保留SD结构。我们还设计专用硬件加速器,充分利用SD结构来提高实际能源效率和延迟。我们在不同的设置中对多个任务,模型和数据集进行实验。结果表明:1)应用于推理,SD可实现高达2.44倍的能效,通过实际硬件实现评估; 2)应用于培训,储存能量降低10.56倍,减少了10.56倍和4.48倍,与最先进的训练基线相比,可忽略的准确性损失。我们的源代码在线提供。
translated by 谷歌翻译
Vision-language models (VLMs) that are pre-trained on large-scale image-text pairs have demonstrated impressive transferability on a wide range of visual tasks. Transferring knowledge from such powerful pre-trained VLMs is emerging as a promising direction for building effective video recognition models. However, the current exploration is still limited. In our opinion, the greatest charm of pre-trained vision-language models is to build a bridge between visual and textual domains. In this paper, we present a novel framework called BIKE which utilizes the cross-modal bridge to explore bidirectional knowledge: i) We propose a Video Attribute Association mechanism which leverages the Video-to-Text knowledge to generate textual auxiliary attributes to complement video recognition. ii) We also present a Temporal Concept Spotting mechanism which uses the Text-to-Video expertise to capture temporal saliency in a parameter-free manner to yield enhanced video representation. The extensive studies on popular video datasets (ie, Kinetics-400 & 600, UCF-101, HMDB-51 and ActivityNet) show that our method achieves state-of-the-art performance in most recognition scenarios, eg, general, zero-shot, and few-shot video recognition. To the best of our knowledge, our best model achieves a state-of-the-art accuracy of 88.4% on challenging Kinetics-400 with the released CLIP pre-trained model.
translated by 谷歌翻译
Cross-view geo-localization aims to estimate the location of a query ground image by matching it to a reference geo-tagged aerial images database. As an extremely challenging task, its difficulties root in the drastic view changes and different capturing time between two views. Despite these difficulties, recent works achieve outstanding progress on cross-view geo-localization benchmarks. However, existing methods still suffer from poor performance on the cross-area benchmarks, in which the training and testing data are captured from two different regions. We attribute this deficiency to the lack of ability to extract the spatial configuration of visual feature layouts and models' overfitting on low-level details from the training set. In this paper, we propose GeoDTR which explicitly disentangles geometric information from raw features and learns the spatial correlations among visual features from aerial and ground pairs with a novel geometric layout extractor module. This module generates a set of geometric layout descriptors, modulating the raw features and producing high-quality latent representations. In addition, we elaborate on two categories of data augmentations, (i) Layout simulation, which varies the spatial configuration while keeping the low-level details intact. (ii) Semantic augmentation, which alters the low-level details and encourages the model to capture spatial configurations. These augmentations help to improve the performance of the cross-view geo-localization models, especially on the cross-area benchmarks. Moreover, we propose a counterfactual-based learning process to benefit the geometric layout extractor in exploring spatial information. Extensive experiments show that GeoDTR not only achieves state-of-the-art results but also significantly boosts the performance on same-area and cross-area benchmarks.
translated by 谷歌翻译
Though transfer learning is promising to increase the learning efficiency, the existing methods are still subject to the challenges from long-horizon tasks, especially when expert policies are sub-optimal and partially useful. Hence, a novel algorithm named EASpace (Enhanced Action Space) is proposed in this paper to transfer the knowledge of multiple sub-optimal expert policies. EASpace formulates each expert policy into multiple macro actions with different execution time period, then integrates all macro actions into the primitive action space directly. Through this formulation, the proposed EASpace could learn when to execute which expert policy and how long it lasts. An intra-macro-action learning rule is proposed by adjusting the temporal difference target of macro actions to improve the data efficiency and alleviate the non-stationarity issue in multi-agent settings. Furthermore, an additional reward proportional to the execution time of macro actions is introduced to encourage the environment exploration via macro actions, which is significant to learn a long-horizon task. Theoretical analysis is presented to show the convergence of the proposed algorithm. The efficiency of the proposed algorithm is illustrated by a grid-based game and a multi-agent pursuit problem. The proposed algorithm is also implemented to real physical systems to justify its effectiveness.
translated by 谷歌翻译
视觉检索中的大多数现有方法是通过比较其全局特征向量的两种方式,该矢量错过了足够的信息并缺乏可解释性,检测图像或视频中的对象,并将文本与依赖复杂的模型设计或建模的精细元素对齐通过较低效率遭受视觉和文本令牌的交叉注意相互作用。为了解决这些局限性,最近的一些作品简单地汇总了代币的相似性以实现细粒度的对齐方式,但它们缺乏直观的解释,并且忽略了令牌级特征和具有高级语义的全球表示之间的关系。在这项工作中,我们重新考虑细粒度的跨模式对准,并为其设计一种新的模型不合命固式配方。我们还揭开了最近的流行作品的神秘面纱,并将其纳入我们的计划。此外,受最佳运输理论的启发,我们引入了\ emph {tokenflow},这是对拟议方案的实例化。通过仅修改相似性函数,我们方法的性能与主要视频文本检索基准上具有重型模型设计的SOTA算法相当。可视化进一步表明\ emph {tokenflow}成功利用细粒度的信息并获得了更好的解释性。
translated by 谷歌翻译
如今,自定进度的学习(SPL)是模仿人类和动物的认知过程的重要机器学习范式。 SPL制度涉及自定进度的正常化程序和逐渐增加的年龄参数,该参数在SPL中起着关键作用,但最佳地终止此过程仍然是不平凡的。一个自然的想法是计算解决方案路径W.R.T.年龄参数(即年龄 - 路径)。但是,当前的年龄段算法要么仅限于最简单的正常器,要么缺乏牢固的理论理解以及计算效率。为了应对这一挑战,我们提出了一个小说\下划线{g} Eneralized \ suespline {ag} e-path \ usewassline {a} lgorithm(gaga)spl,用于带基于普通微分方程(ODES)的各种自定为常规器的SPL,并设置控制,可以学习整个解决方案频谱W.R.T.一系列年龄参数。据我们所知,GAGA是第一个确切的途径遵循算法,该算法可以解决一般的自定为常规器的年龄段。最后,详细描述了经典SVM和Lasso的算法步骤。我们证明了GAGA在现实世界数据集上的性能,并在我们的算法和竞争基线之间找到相当大的加速。
translated by 谷歌翻译
尽管固定环境中的单一机构政策优化最近在增强学习社区中引起了很多研究的关注,但是当在潜在竞争性的环境中有多个代理商在玩耍时,从理论上讲,少得多。我们通过提出和分析具有结构化但未知过渡的零和Markov游戏的新的虚拟游戏策略优化算法来向前迈进。我们考虑两类的过渡结构:分类的独立过渡和单个控制器过渡。对于这两种情况,我们都证明了紧密的$ \ widetilde {\ Mathcal {o}}(\ sqrt {k})$遗憾的范围在$ k $ eviepodes之后,在两种代理竞争的游戏场景中。每个代理人的遗憾是针对潜在的对抗对手的衡量,他们在观察完整的政策序列后可以在事后选择一个最佳政策。我们的算法在非平稳环境中同时进行政策优化的范围下,具有上置信度结合(UCB)的乐观和虚拟游戏的结合。当两个玩家都采用所提出的算法时,他们的总体最优差距为$ \ widetilde {\ Mathcal {o}}(\ sqrt {k})$。
translated by 谷歌翻译
多元长序列时间序列预测(M-LSTF)是一个实用但具有挑战性的问题。与传统的计时器序列预测任务不同,M-LSTF任务从两个方面更具挑战性:1)M-LSTF模型需要在多个时间功能之间和多个时间序列之间学习时间序列模式; 2)在滚动预测设置下,两个连续训练样本之间的相似性随着预测长度的增加而增加,这使模型更容易过度拟合。在本文中,我们提出了一个可推广的内存驱动变压器,以靶向M-LSTF问题。具体而言,我们首先提出一个全局级内存组件,以通过集成多个时间序列功能来驱动预测过程。此外,我们采用了一种进步的方式来训练我们的模型以提高其普遍性,在这种情况下,我们逐渐向培训样品引入伯努利的噪音。已经在多个字段上对五个不同的数据集进行了广泛的实验。实验结果表明,我们的方法可以无缝地插入不同的基于变压器的模型中,以提高其性能至大约30%。特别是,这是我们最好的知识专门关注M-LSTF任务的第一项工作。
translated by 谷歌翻译